Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
1.
Sci Transl Med ; 16(734): eadg7162, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38277467

RESUMO

Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Humanos , Esclerose Amiotrófica Lateral/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Peptídeos , Proteômica
2.
Invest Radiol ; 59(3): 243-251, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37493285

RESUMO

BACKGROUND: Leptomeningeal contrast enhancement (LME) on T2-weighted Fluid-Attenuated Inversion Recovery (T2-FLAIR) MRI is a reported marker of leptomeningeal inflammation, which is known to be associated with progression of multiple sclerosis (MS). However, this MRI approach, as typically implemented on clinical 3-tesla (T) systems, detects only a few enhancing foci in ~25% of patients and has thus been criticized as poorly sensitive. PURPOSE: To compare an optimized 3D real-reconstruction inversion recovery (Real-IR) MRI sequence on a clinical 3 T scanner to T2-FLAIR for prevalence, characteristics, and clinical/radiological correlations of LME. MATERIALS AND METHODS: We obtained 3D T2-FLAIR and Real-IR scans before and after administration of standard-dose gadobutrol in 177 scans of 154 participants (98 women, 64%; mean ± SD age: 49 ± 12 years), including 124 with an MS-spectrum diagnosis, 21 with other neurological and/or inflammatory disorders, and 9 without neurological history. We calculated contrast-to-noise ratios (CNR) in 20 representative LME foci and determined association of LME with cortical lesions identified at 7 T (n = 19), paramagnetic rim lesions (PRL) at 3 T (n = 105), and clinical/demographic data. RESULTS: We observed focal LME in 73% of participants on Real-IR (70% in established MS, 33% in healthy volunteers, P < 0.0001), compared to 33% on T2-FLAIR (34% vs. 11%, P = 0.0002). Real-IR showed 3.7-fold more LME foci than T2-FLAIR ( P = 0.001), including all T2-FLAIR foci. LME CNR was 2.5-fold higher by Real-IR ( P < 0.0001). The major determinant of LME status was age. Although LME was not associated with cortical lesions, the number of PRL was associated with the number of LME foci on both T2-FLAIR ( P = 0.003) and Real-IR ( P = 0.0003) after adjusting for age, sex, and white matter lesion volume. CONCLUSIONS: Real-IR a promising tool to detect, characterize, and understand the significance of LME in MS. The association between PRL and LME highlights a possible role of the leptomeninges in sustaining chronic inflammation.


Assuntos
Esclerose Múltipla , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética , Meninges/diagnóstico por imagem , Meninges/patologia , Inflamação/patologia
3.
NeuroImmune Pharm Ther ; 2(3): 253-266, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38013835

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia. While pathologic hallmarks, such as extracellular beta-amyloid plaques, are well-characterized in affected individuals, the pathogenesis that causes plaque formation and eventual cognitive decline is not well understood. A recent resurgence of the decades-old "infectious hypothesis" has garnered increased attention on the potential role that microbes may play in AD. In this theory, it is thought that pathogens such as viruses may act as seeds for beta-amyloid aggregation, ultimately leading to plaques. Interest in the infectious hypothesis has also spurred further investigation into additional characteristics of viral infection that may play a role in AD progression, such as neuroinflammation, latency, and viral DNA integration. While a flurry of research in this area has been recently published, with herpesviruses being of particular interest, the role of pathogens in AD remains controversial. In this review, the insights gained thus far into the possible role of herpesviruses in AD are summarized. The challenges and potential future directions of herpesvirus research in AD and dementia are also discussed.

4.
Nano Lett ; 23(20): 9195-9202, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37788377

RESUMO

The analysis of small particles, including extracellular vesicles and viruses, is contingent on their ability to scatter sufficient light to be detected. These detection methods include flow cytometry, nanoparticle tracking analysis, and single particle reflective image sensing. To standardize measurements and enable orthogonal comparisons between platforms, a quantifiable limit of detection is required. The main parameters that dictate the amount of light scattered by particles include size, morphology, and refractive index. To date, there has been a lack of accessible techniques for measuring the refractive index of nanoparticles at a single-particle level. Here, we demonstrate two methods of deriving a small particle refractive index using orthogonal measurements with commercially available platforms. These methods can be applied at either a single-particle or population level, enabling the integration of diameter and scattering cross section values to derive the refractive index using Mie theory.


Assuntos
Vesículas Extracelulares , Nanopartículas , Humanos , Refratometria , Citometria de Fluxo/métodos
5.
bioRxiv ; 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37808784

RESUMO

Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune encephalitis (EAE) in the common marmoset, the most faithful animal model of these processes. Using MRI-informed RNA profiling, we analyzed ~600,000 single-nucleus and ~55,000 spatial transcriptomes, comparing them against EAE inoculation status, longitudinal radiological signals, and histopathological features. We categorized 5 groups of microenvironments pertinent to neural function, immune and glial responses, tissue destruction and repair, and regulatory network at brain borders. Exploring perilesional microenvironment diversity, we uncovered central roles of EAE-associated astrocytes, oligodendrocyte precursor cells, and ependyma in lesion formation and resolution. We pinpointed imaging and molecular features capturing the pathological trajectory of WM, offering potential for assessing treatment outcomes using marmoset as a platform.

6.
Front Immunol ; 14: 1235791, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37622115

RESUMO

Background and objectives: Extracellular vesicles and particles (EVPs) are released from virtually all cell types, and may package many inflammatory factors and, in the case of infection, viral components. As such, EVPs can play not only a direct role in the development and progression of disease but can also be used as biomarkers. Here, we characterized immune signatures of EVPs from the cerebrospinal fluid (CSF) of individuals with HTLV-1-associated myelopathy (HAM), other chronic neurologic diseases, and healthy volunteers (HVs) to determine potential indicators of viral involvement and mechanisms of disease. Methods: We analyzed the EVPs from the CSF of HVs, individuals with HAM, HTLV-1-infected asymptomatic carriers (ACs), and from patients with a variety of chronic neurologic diseases of both known viral and non-viral etiologies to investigate the surface repertoires of CSF EVPs during disease. Results: Significant increases in CD8+ and CD2+ EVPs were found in HAM patient CSF samples compared to other clinical groups (p = 0.0002 and p = 0.0003 compared to HVs, respectively, and p = 0.001 and p = 0.0228 compared to MS, respectively), consistent with the immunopathologically-mediated disease associated with CD8+ T-cells in the central nervous system (CNS) of HAM patients. Furthermore, CD8+ (p < 0.0001), CD2+ (p < 0.0001), CD44+ (p = 0.0176), and CD40+ (p = 0.0413) EVP signals were significantly increased in the CSF from individuals with viral infections compared to those without. Discussion: These data suggest that CD8+ and CD2+ CSF EVPs may be important as: 1) potential biomarkers and indicators of disease pathways for viral-mediated neurological diseases, particularly HAM, and 2) as possible meditators of the disease process in infected individuals.


Assuntos
Vesículas Extracelulares , Doenças do Sistema Nervoso , Paraparesia Espástica Tropical , Humanos , Sistema Nervoso Central , Antígenos CD40 , Doença Crônica
7.
Nat Commun ; 14(1): 5247, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640701

RESUMO

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Assuntos
Microglia , Doenças Neurodegenerativas , Animais , Camundongos , Doenças Neurodegenerativas/genética , Macrófagos , Células Mieloides , Deriva Genética
8.
Artigo em Inglês | MEDLINE | ID: mdl-37562974

RESUMO

BACKGROUND AND OBJECTIVES: Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that establishes lifelong latency in memory B cells and has been identified as a major risk factor of multiple sclerosis (MS). B cell depletion therapies have disease-modifying benefit in MS. However, it is unclear whether this benefit is partly attributable to the elimination of EBV+ B cells. Currently, there are no EBV-specific antiviral therapies available for targeting EBV latent infection in MS and limited experimental models to study EBV in MS. METHODS: In this study, we describe the establishment of spontaneous lymphoblastoid cell lines (SLCLs) generated ex vivo with the endogenous EBV of patients with MS and controls and treated with either an Epstein-Barr virus nuclear antigen 1 (EBNA1) inhibitor (VK-1727) or cladribine, a nucleoside analog that eliminates B cells. RESULTS: We showed that a small molecule inhibitor of EBNA1, a critical regulator of the EBV life cycle, blocks the proliferation and metabolic activity of these SLCLs. In contrast to cladribine, a highly cytotoxic B cell depleting therapy currently used in MS, the EBNA1 inhibitor VK-1727 was cytostatic rather than cytotoxic and selective for EBV+ cells, while having no discernible effects on EBV- cells. We validate that VK-1727 reduces EBNA1 DNA binding at known viral and cellular sites by ChIP-qPCR. DISCUSSION: This study shows that patient-derived SLCLs provide a useful tool for interrogating the role of EBV+ B cells in MS and suggests that a clinical trial testing the effect of EBNA1 inhibitors in MS may be warranted.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Linhagem Celular , Proliferação de Células , Cladribina/farmacologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Estudos de Casos e Controles
9.
Mult Scler J Exp Transl Clin ; 9(2): 20552173231169463, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139460

RESUMO

Background: CombiRx was a randomized, double-blind, placebo-controlled phase 3 trial in treatment-naive relapsing-remitting multiple sclerosis (RRMS) patients randomized to intramuscular interferon beta-1a (IM IFN beta-1a), glatiramer acetate (GA), or both therapies. Objective: This analysis investigated changes in serum neurofilament light-chain (sNfL) levels in response to treatment and assessed baseline sNfL as a predictor of relapse. Methods: RRMS patients treated with IM IFN beta-1a 30 µg weekly + placebo (n = 159), GA 20 mg/mL daily + placebo (n = 172), or IM IFN beta-1a + GA (n = 344) were included. A linear mixed model compared sNfL values over time. Cox regression models analyzed baseline sNfL and gadolinium-enhancing (Gd+) lesions as predictors of relapse. Results: In all treatment arms, the proportion of patients with sNfL ≥16 pg/mL decreased significantly from baseline to 6 months and was maintained at 36 months. A significantly higher percentage of patients with both baseline sNfL ≥16 pg/mL and ≥1 Gd+ lesion experienced relapses within 90 days compared to patients with sNfL <16 pg/mL and/or no Gd+ lesions. Conclusion: sNfL levels were reduced within 6 months and remained low at 36 months. Results suggest that the combination of lesion activity and sNfL was a stronger predictor of relapse than either factor alone.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37147136

RESUMO

BACKGROUND AND OBJECTIVES: SARS-CoV-2 infection has been associated with a syndrome of long-term neurologic sequelae that is poorly characterized. We aimed to describe and characterize in-depth features of neurologic postacute sequelae of SARS-CoV-2 infection (neuro-PASC). METHODS: Between October 2020 and April 2021, 12 participants were seen at the NIH Clinical Center under an observational study to characterize ongoing neurologic abnormalities after SARS-CoV-2 infection. Autonomic function and CSF immunophenotypic analysis were compared with healthy volunteers (HVs) without prior SARS-CoV-2 infection tested using the same methodology. RESULTS: Participants were mostly female (83%), with a mean age of 45 ± 11 years. The median time of evaluation was 9 months after COVID-19 (range 3-12 months), and most (11/12, 92%) had a history of only a mild infection. The most common neuro-PASC symptoms were cognitive difficulties and fatigue, and there was evidence for mild cognitive impairment in half of the patients (MoCA score <26). The majority (83%) had a very disabling disease, with Karnofsky Performance Status ≤80. Smell testing demonstrated different degrees of microsmia in 8 participants (66%). Brain MRI scans were normal, except 1 patient with bilateral olfactory bulb hypoplasia that was likely congenital. CSF analysis showed evidence of unique intrathecal oligoclonal bands in 3 cases (25%). Immunophenotyping of CSF compared with HVs showed that patients with neuro-PASC had lower frequencies of effector memory phenotype both for CD4+ T cells (p < 0.0001) and for CD8+ T cells (p = 0.002), an increased frequency of antibody-secreting B cells (p = 0.009), and increased frequency of cells expressing immune checkpoint molecules. On autonomic testing, there was evidence for decreased baroreflex-cardiovagal gain (p = 0.009) and an increased peripheral resistance during tilt-table testing (p < 0.0001) compared with HVs, without excessive plasma catecholamine responses. DISCUSSION: CSF immune dysregulation and neurocirculatory abnormalities after SARS-CoV-2 infection in the setting of disabling neuro-PASC call for further evaluation to confirm these changes and explore immunomodulatory treatments in the context of clinical trials.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Feminino , Masculino , Humanos , COVID-19/complicações , SARS-CoV-2 , Encéfalo , Catecolaminas
11.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36747793

RESUMO

Functional loss of TDP-43, an RNA-binding protein genetically and pathologically linked to ALS and FTD, leads to inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. However, the possibility of de novo protein synthesis from cryptic exon transcripts has not been explored. Here, we show that mRNA transcripts harboring cryptic exons generate de novo proteins both in TDP-43 deficient cellular models and in disease. Using coordinated transcriptomic and proteomic studies of TDP-43 depleted iPSC-derived neurons, we identified numerous peptides that mapped to cryptic exons. Cryptic exons identified in iPSC models were highly predictive of cryptic exons expressed in brains of patients with TDP-43 proteinopathy, including cryptic transcripts that generated de novo proteins. We discovered that inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Finally, we showed that these de novo peptides were present in CSF from patients with ALS. The demonstration of cryptic exon translation suggests new mechanisms for ALS pathophysiology downstream of TDP-43 dysfunction and may provide a strategy for novel biomarker development.

12.
Sci Adv ; 9(1): eabq6978, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598996

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Although various viruses have been proposed to contribute to MS pathology, the etiology of MS remains unknown. Since intrathecal antibody synthesis is well documented in chronic viral infection and neuroinflammatory diseases, we hypothesized whether the patterns of antigen-specific antibody responses associated with various viral exposures may define patients with CNS chronic immune dysregulation. The pan-viral antibody profiling in cerebrospinal fluid (CSF) and serum of patients with MS showed significant differences from those in healthy volunteers and a pattern of antibody responses against multiple viruses, including the previously identified Epstein-Barr virus. These findings demonstrate that virus-specific antibody signatures might be able to reflect disease-associated inflammatory milieu in CSF of subjects with neuroinflammatory diseases.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Humanos , Herpesvirus Humano 4 , Doenças Neuroinflamatórias , Antivirais
13.
J Spinal Cord Med ; 46(6): 950-957, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-34855576

RESUMO

PURPOSE: The purpose of this work was to employ a semi-automatic method for measuring spinal cord cross-sectional area (SCCSA) and investigate the correlations between diffusion tensor imaging (DTI) metrics and SCCSA for the cervical and thoracic spinal cord for typically developing pediatric subjects and pediatric subject with spinal cord injury. METHODS: Ten typically developing (TD) pediatric subjects and ten pediatric subjects with spinal cord injury (SCI) were imaged using a Siemens Verio 3 T MR scanner to acquire DTI and high-resolution anatomic scans covering the cervical and thoracic spinal cord (C1-T12). SCCSA was measured using a semi-automated edge detection algorithm for the entire spinal cord. DTI metrics were obtained from whole cord axial ROIs at each vertebral level. SCCSA measures were compared to DTI metrics by vertebral level throughout the entire cord, and above and below the injury site. Correlation analysis was performed to compare SCCSA, DTI and clinical measures as determined by the International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) examination. RESULTS: In subjects with SCI, FA and SCCSA had a positive correlation (r = 0.81, P < 0.01), while RD and SCCSA had a negative correlation (r = -0.68, P = 0.02) for the full spinal cord. FA and SCCSA were correlated above (r = 0.56, P < 0.01) and below (r = 0.54, P < 0.01) the injury site. TD subjects showed negative correlations between AD and SCCSA (r = -0.73, P = 0.01) and RD and SCCSA (r = -0.79, P < 0.01). CONCLUSION: The ability to quickly and effectively measure SCCSA in subjects with SCI has the potential to allow for a better understanding of the progression of atrophy following a SCI. Correlations between cord cross section and DTI metrics by vertebral level suggest that imaging inferior and superior to lesion may yield useful information for diagnosis and prognosis.


Assuntos
Traumatismos da Medula Espinal , Humanos , Criança , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/patologia , Imagem de Tensor de Difusão/métodos , Medula Espinal/diagnóstico por imagem , Medula Espinal/patologia , Prognóstico
14.
Front Immunol ; 13: 984274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189294

RESUMO

Human T lymphotropic virus 1 (HTLV-1) is a human retrovirus identified as the causative agent in adult T-cell leukemia/lymphoma (ATL) and chronic-progressive neuroinflammatory disorder HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 is estimated to infect between 5-20 million people worldwide, although most infected individuals remain asymptomatic. HTLV-1 infected persons carry an estimated lifetime risk of approximately 5% of developing ATL, and between 0.25% and 1.8% of developing HAM/TSP. Most HTLV-1 infection is detected in CD4+ T cells in vivo which causes the aggressive malignancy in ATL. In HAM/TSP, the increase of HTLV-1 provirus induces immune dysregulation to alter inflammatory milieu, such as expansion of HTLV-1-specific CD8+ T cells, in the central nervous system of the infected subjects, which have been suggested to underlie the pathogenesis of HAM/TSP. Factors contributing to the conversion from asymptomatic carrier to disease state remain poorly understood. As such, the identification and tracking of HTLV-1-specific T cell biomarkers that may be used to monitor the progression from primary infection to immune dysfunction and disease are of great interest. T cell receptor (TCR) repertoires have been extensively investigated as a mechanism of monitoring adaptive T cell immune response to viruses and tumors. Breakthrough technologies such as single-cell RNA sequencing have increased the specificity with which T cell clones may be characterized and continue to improve our understanding of TCR signatures in viral infection, cancer, and associated treatments. In HTLV-1-associated disease, sequencing of TCR repertoires has been used to reveal repertoire patterns, diversity, and clonal expansions of HTLV-1-specific T cells capable of immune evasion and dysregulation in ATL as well as in HAM/TSP. Conserved sequence analysis has further been used to identify CDR3 motif sequences and exploit disease- or patient-specificity and commonality in HTLV-1-associated disease. In this article we review current research on TCR repertoires and HTLV-1-specific clonotypes in HTLV-1-associated diseases ATL and HAM/TSP and discuss the implications of TCR clonal expansions on HTLV-1-associated disease course and treatments.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical , Adulto , Biomarcadores , Linfócitos T CD8-Positivos/patologia , Humanos , Paraparesia Espástica Tropical/patologia , Receptores de Antígenos de Linfócitos T/genética
15.
Nat Commun ; 13(1): 5531, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130924

RESUMO

To understand the cellular composition and region-specific specialization of white matter - a disease-relevant, glia-rich tissue highly expanded in primates relative to rodents - we profiled transcriptomes of ~500,000 nuclei from 19 tissue types of the central nervous system of healthy common marmoset and mapped 87 subclusters spatially onto a 3D MRI atlas. We performed cross-species comparison, explored regulatory pathways, modeled regional intercellular communication, and surveyed cellular determinants of neurological disorders. Here, we analyze this resource and find strong spatial segregation of microglia, oligodendrocyte progenitor cells, and astrocytes. White matter glia are diverse, enriched with genes involved in stimulus-response and biomolecule modification, and predicted to interact with other resident cells more extensively than their gray matter counterparts. Conversely, gray matter glia preserve the expression of neural tube patterning genes into adulthood and share six transcription factors that restrict transcriptome complexity. A companion Callithrix jacchus Primate Cell Atlas (CjPCA) is available through https://cjpca.ninds.nih.gov .


Assuntos
Callithrix , Substância Branca , Animais , Microglia/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Substância Branca/metabolismo
16.
Mult Scler ; 28(12): 1891-1902, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35674284

RESUMO

BACKGROUND: The "central vein sign" (CVS), a linear hypointensity on T2*-weighted imaging corresponding to a central vein/venule, is associated with multiple sclerosis (MS) lesions. The effect of lesion-size exclusion criteria on MS diagnostic accuracy has not been extensively studied. OBJECTIVE: Investigate the optimal lesion-size exclusion criteria for CVS use in MS diagnosis. METHODS: Cross-sectional study of 163 MS and 51 non-MS, and radiological/histopathological correlation of 5 MS and 1 control autopsy cases. The effects of lesion-size exclusion on MS diagnosis using the CVS, and intralesional vein detection on histopathology were evaluated. RESULTS: CVS+ lesions were larger compared to CVS- lesions, with effect modification by MS diagnosis (mean difference +7.7 mm3, p = 0.004). CVS percentage-based criteria with no lesion-size exclusion showed the highest diagnostic accuracy in differentiating MS cases. However, a simple count of three or more CVS+ lesions greater than 3.5 mm is highly accurate and can be rapidly implemented (sensitivity 93%; specificity 88%). On magnetic resonance imaging (MRI)-histopathological correlation, the CVS had high specificity for identifying intralesional veins (0/7 false positives). CONCLUSION: Lesion-size measures add important information when using CVS+ lesion counts for MS diagnosis. The CVS is a specific biomarker corresponding to intralesional veins on histopathology.


Assuntos
Esclerose Múltipla , Encéfalo/patologia , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Veias/diagnóstico por imagem
17.
Viruses ; 14(6)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35746716

RESUMO

Background: Lytic infection of oligodendrocytes by the human JC polyomavirus (JCPyV) results in the demyelinating disease called progressive multifocal leukoencephalopathy (PML). The detection of viral DNA in the cerebrospinal fluid (CSF) by PCR is an important diagnostic tool and, in conjunction with defined radiological and clinical features, can provide diagnosis of definite PML, avoiding the need for brain biopsy. The main aim of this study is to compare the droplet digital PCR (ddPCR) assay with the gold standard quantitative PCR (qPCR) for the quantification of JC viral loads in clinical samples. Methods: A total of 62 CSF samples from 31 patients with PML were analyzed to compare the qPCR gold standard technique with ddPCR to detect conserved viral DNA sequences in the JCPyV genome. As part of the validation process, ddPCR results were compared to qPCR data obtained in 42 different laboratories around the world. In addition, the characterization of a novel triplex ddPCR to detect viral DNA sequence from both prototype and archetype variants and a cellular housekeeping reference gene is described. Triplex ddPCR was used to analyze the serum from six PML patients and from three additional cohorts, including 20 healthy controls (HC), 20 patients with multiple sclerosis (MS) who had never been treated with natalizumab (no-NTZ-treated), and 14 patients with MS who were being treated with natalizumab (NTZ-treated); three from this last group seroconverted during the course of treatment with natalizumab. Results: JCPyV DNA was detected only by ddPCR for 5 of the 62 CSF samples (8%), while remaining undetected by qPCR. For nine CSF samples (15%), JCPyV DNA was at the lower limit of quantification for qPCR, set at <250 copies/mL, and therefore no relative quantitation could be determined. By contrast, exact copies of JCPyV for each of these samples were quantified by ddPCR. No differences were observed between qPCR and ddPCR when five standardized plasma samples were analyzed for JCPyV in 42 laboratories in the United States and Europe. JCPyV-DNA was undetected in all the sera from HC and MS cohorts tested by triplex ddPCR, while serum samples from six patients with PML tested positive for JCPyV. Conclusion: This study shows strong correlation between ddPCR and qPCR with increased sensitivity of the ddPCR assay. Further work will be needed to determine whether multiplex ddPCR can be useful to determine PML risk in natalizumab-treated MS patients.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Esclerose Múltipla , DNA Viral/genética , Humanos , Vírus JC/genética , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Natalizumab/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral
18.
Viruses ; 14(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062340

RESUMO

Corticosteroids are most commonly used to treat HTLV-1-associated myelopathy (HAM); however, their clinical efficacy has not been tested in randomized clinical trials. This randomized controlled trial included 8 and 30 HAM patients with rapidly and slowly progressing walking disabilities, respectively. Rapid progressors were assigned (1:1) to receive or not receive a 3-day course of intravenous methylprednisolone in addition to oral prednisolone therapy. Meanwhile, slow progressors were assigned (1:1) to receive oral prednisolone or placebo. The primary outcomes were a composite of ≥1-grade improvement in the Osame Motor Disability Score or ≥30% improvement in the 10 m walking time (10 mWT) at week 2 for rapid progressors and changes from baseline in 10 mWT at week 24 for slow progressors. In the rapid progressor trial, all four patients with but only one of four without intravenous methylprednisolone achieved the primary outcome (p = 0.14). In the slow progressor trial, the median changes in 10 mWT were -13.8% (95% CI: -20.1--7.1; p < 0.001) and -6.0% (95% CI: -12.8-1.3; p = 0.10) with prednisolone and placebo, respectively (p for between-group difference = 0.12). Whereas statistical significance was not reached for the primary endpoints, the overall data indicated the benefit of corticosteroid therapy. (Registration number: UMIN000023798, UMIN000024085).


Assuntos
Corticosteroides/uso terapêutico , Vírus Linfotrópico T Tipo 1 Humano , Paraparesia Espástica Tropical/tratamento farmacológico , Idoso , Pessoas com Deficiência , Feminino , Humanos , Masculino , Metilprednisolona/uso terapêutico , Pessoa de Meia-Idade , Transtornos Motores/tratamento farmacológico , Paraparesia Espástica Tropical/líquido cefalorraquidiano , Prednisolona/uso terapêutico , Estudos Prospectivos , Resultado do Tratamento
19.
Ann Clin Transl Neurol ; 8(10): 1970-1985, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34562313

RESUMO

OBJECTIVE: Human T-cell lymphotropic virus 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, progressive myelopathy. A high proviral load (PVL) is one of the main risk factors for HAM/TSP. Recently, it was shown that raltegravir could inhibit cell-free and cell-to-cell transmission of HTLV-1 in vitro. Given the substantial clinical experience in human immunodeficiency virus infection and its excellent safety profile, this agent may be an attractive therapeutic option for HAM/TSP patients. METHODS: Sixteen subjects with HAM/TSP received raltegravir 400 mg orally twice daily in an initial 6-month treatment phase, followed by a 9-month post-treatment phase. HTLV-1 PVLs were assessed using droplet digital PCR from the PBMCs every 3 months, and from the CSF at baseline, month 6, and month 15. We also evaluated the ability of raltegravir to regulate abnormal immune responses in HAM/TSP patients. RESULTS: While a downward trend was observed in PBMC and/or CSF PVLs of some patients, raltegravir overall did not have any impact on the PVL in this HAM/TSP patient cohort. Clinically, all patients' neurological scores and objective measurements remained relatively stable, with some expected variability. Immunologic studies showed alterations in the immune profiles of a subset of patients including decreased CD4+ CD25+ T cells and spontaneous lymphoproliferation. INTERPRETATION: Raltegravir was generally well tolerated in this HAM/TSP patient cohort. A subset of patients exhibited a mild decrease in PVL as well as variations in their immune profiles after taking raltegravir. These findings suggest that raltegravir may be a therapeutic option in select HAM/TSP patients. CLINICAL TRIAL REGISTRATION NUMBER: NCT01867320.


Assuntos
Inibidores de Integrase/farmacologia , Paraparesia Espástica Tropical/tratamento farmacológico , Raltegravir Potássico/farmacologia , Adulto , Idoso , Feminino , Humanos , Inibidores de Integrase/administração & dosagem , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Raltegravir Potássico/administração & dosagem , Resultado do Tratamento
20.
Neuroimage Clin ; 30: 102680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34215150

RESUMO

OBJECTIVE: We sought to characterize spinal cord atrophy along the entire spinal cord in the major multiple sclerosis (MS) phenotypes, and evaluate its correlation with clinical disability. METHODS: Axial T1-weighted images were automatically reformatted at each point along the cord. Spinal cord cross-sectional area (SCCSA) were calculated from C1-T10 vertebral body levels and profile plots were compared across phenotypes. Average values from C2-3, C4-5, and T4-9 regions were compared across phenotypes and correlated with clinical scores, and then categorized as atrophic/normal based on z-scores derived from controls, to compare clinical scores between subgroups. In a subset of relapsing-remitting cases with longitudinal scans these regions were compared to change in clinical scores. RESULTS: The cross-sectional study consisted of 149 adults diagnosed with relapsing-remitting MS (RRMS), 49 with secondary-progressive MS (SPMS), 58 with primary-progressive MS (PPMS) and 48 controls. The longitudinal study included 78 RRMS cases. Compared to controls, all MS groups had smaller average regions except RRMS in T4-9 region. In all MS groups, SCCSA from all regions, particularly the cervical cord, correlated with most clinical measures. In the RRMS cohort, 22% of cases had at least one atrophic region, whereas in progressive MS the rate was almost 70%. Longitudinal analysis showed correlation between clinical disability and cervical cord thinning. CONCLUSIONS: Spinal cord atrophy was prevalent across MS phenotypes, with regional measures from the RRMS cohort and the progressive cohort, including SPMS and PPMS, being correlated with disability. Longitudinal changes in the spinal cord were documented in RRMS cases, making it a potential marker for disease progression. While cervical SCCSA correlated with most disability and progression measures, inclusion of thoracic measurements improved this correlation and allowed for better subgrouping of spinal cord phenotypes. Cord atrophy is an important and easily obtainable imaging marker of clinical and sub-clinical progression in all MS phenotypes, and such measures can play a key role in patient selection for clinical trials.


Assuntos
Medula Cervical , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Adulto , Atrofia/patologia , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Estudos Transversais , Avaliação da Deficiência , Progressão da Doença , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/patologia , Fenótipo , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...